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Abstract 
A significant proportion of industrially important small molecules are aromatic, and the majority of these compounds are pro-
duced chemically, relying heavily on fossil resources. In bacteria and plants, the shikimate pathway and related biosynthetic 
routes serve as the primary sources of aromatic compounds. Microbial cell factories, which are poised to play a central role 
in the emerging bio-based economy, provide a sustainable alternative for producing commercially valuable aromatics from 
renewable resources. Corynebacterium glutamicum, already established as an industrial workhorse for the large-scale pro-
duction of various amino acids, can be engineered to overproduce aromatic compounds derived from the shikimate pathway. 
Furthermore, the functional integration of heterologous or synthetic pathways enables access to high-value natural products, 
such as plant polyphenols and other polyketides. This review highlights recent advancements in the metabolic engineering 
of C. glutamicum for the sustainable production of these aromatic compounds.

Key points
• C. glutamicum’s high tolerance to aromatic compounds is key to aromatics production.
• Detailed physiological insights enable access to shikimate pathway-derived products.
• Diverse plant (poly)phenols and other aromatic polyketides can be produced.

Keywords Corynebacterium glutamicum · Metabolic engineering · Aromatic · Aromatic compound · Shikimate pathway · 
Plant polyphenol · Polyketide

Introduction

Aromatic compounds constitute a diverse class of chemi-
cals with numerous industrial applications, including their 
use as organic solvents, dyes, fuels, food, and feed addi-
tives, as well as building blocks for pharmaceuticals and 
polymer materials (Noda and Kondo 2017; Averesch and 
Krömer 2018). Currently, the vast majority of aromatic 
chemicals are produced through the chemical conver-
sion of BTX (benzene, toluene, and xylene) derived from 
petroleum-based feedstocks or natural gas (Krömer et al. 
2013). However, growing concerns over the consumption 

of fossil resources and the environmental impacts of chem-
ical production, in particular significant  CO2 emissions, 
have spurred efforts to develop more sustainable produc-
tion methods in recent years (Dickey et al. 2021). Alterna-
tively, catalytic fast pyrolysis of biomass feedstocks (e.g., 
lignin) to bio-oil offers a potential pathway for producing 
commercially interesting aromatics, but faces challenges 
such as low catalyst stability, high-energy requirements, 
and the accumulation of undesired by-products (Yildiz 
et al. 2016; Nekhaev and Maksimov 2021).

In comparison, microbial production of aromatic com-
pounds represents a promising alternative with several 
advantages. Typically, microbial production from abundant 
and inexpensive sugar feedstocks is more environmentally 
friendly compared to chemical synthesis, since it avoids 
the use of heavy metals, organic solvents, and strong 
acids or bases. Additionally, microorganisms exhibit rapid 
growth, enabling short production times, and microbial 
fermentation processes are scalable—from laboratory 
bench-top experiments to industrial-scale fermenters 
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with capacities of several hundred cubic meters (Nielsen 
et al. 2022). Most bacteria and archaea, but also protozoa, 
fungi, algae, and plants (but notably not animals!) pos-
sess the metabolic capacity to synthesize various aromatic 
compounds via the shikimate pathway, a source of both, 
aromatic and nonaromatic compounds with commercial 
value (Herrmann and Weaver 1999; Shende et al. 2024). 
To harness the potential of the shikimate pathway for pro-
ducing valuable small aromatic molecules, organisms such 
as Escherichia coli and Saccharomyces cerevisiae have 
been studied for many years (Jiang and Zhang 2016; Liu 
et al. 2020).

Another microorganism considered to be well suited 
for the production of aromatic compounds is Corynebac-
terium glutamicum, a Gram-positive, non-motile and 
non-pathogenic soil bacterium. This organism has been 
adopted industrially for the production of proteinogenic 
amino acids since its discovery as l-glutamate-overpro-
ducing microorganism in Japan more than 70 years ago 
(Kinoshita et al. 1957). C. glutamicum demonstrates sev-
eral physiological properties advantageous to fermentative 
microbial production, such as (i) high sugar consumption 
rates under either aerobic or anaerobic conditions, regard-
less of cell density, (ii) a strong tolerance to osmotic stress, 
and (iii) the capability of simultaneously utilizing sugar 
mixtures without carbon catabolite repression (Kogure 
and Inui 2018; Zha et al. 2023). Extensive scientific work 
in laboratories worldwide has provided a comprehensive 

physiological and genetic understanding of this organism. 
This work facilitated the development of detailed genome-
scale models and advanced -omics tools for its global anal-
ysis (Parise et al. 2020; Gong et al. 2024). In addition, 
numerous methods for the genetic manipulation of C. glu-
tamicum are available, enabling the metabolic engineering 
of this bacterium for diverse applications (Nešvera and 
Pátek 2011; Jiang et al. 2017). Hence, it is no surprise that 
these extensive research efforts turned C. glutamicum into 
a versatile microbial platform organism for the synthesis 
of approximately 100 small molecules of biotechnological 
interest. These compounds include alcohols, organic acids, 
amino acid derivatives, diamines, fatty acids, and terpe-
noids (Wolf et al. 2021; Zha et al. 2023). In this context, it 
is astonishing that the potential of C. glutamicum for pro-
ducing aromatic compounds beyond aromatic amino acids 
is relatively underutilized. The described high resistance 
to increased concentrations of cytotoxic aromatic com-
pounds such as hydroxybenzoic acids or phenylpropanoids 
would be a significant advantage of C. glutamicum–based 
cell factories for aromatics production (Kallscheuer et al. 
2016a; Kitade et al. 2018). For instance, in direct compari-
son to Pseudomonas putida, another robust biotechnologi-
cal workhorse, C. glutamicum grows faster and reaches a 
higher biomass yield when cultivated in the presence of 
10 g  L−1 anthranilate (Kuepper et al. 2020). This tolerance 
of C. glutamicum is partly attributed to the characteristic 
outer membrane rich in mycolic acids, which acts as a 
permeability barrier (Marchand et al. 2012). Additionally, 
the extensive catabolic network for the degradation of aro-
matic compounds in C. glutamicum is well understood, 
and can easily be manipulated to enable the accumula-
tion of valuable pathway intermediates or to prevent the 
degradation of precursor molecules or target compounds 
(Kallscheuer et al. 2016a).

In this review, I summarize advances in metabolic engi-
neering of C. glutamicum for the synthesis of aromatics over 
the past 10 years, covering shikimate pathway–derived com-
pounds, plant (poly)phenols, and other polyketides.

Production of shikimate pathway 
intermediates and aromatic amino acids

The canonical shikimate pathway, which also represents 
the primary route for the biosynthesis of aromatic com-
pounds in C. glutamicum, begins with an enzyme-cata-
lyzed aldol-like condensation of phosphoenolpyruvate 
(PEP), derived from glycolysis, and d-erythrose-4-phos-
phate (E4P), originating from the pentose phosphate 
pathway (Fig.  1). This decisive reaction, yielding 
3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP), 
is catalyzed by two feedback-regulated DAHP-synthase 

Fig. 1  Schematic overview of the shikimate pathway in C. glutami-
cum and relevant metabolic pathways to biotechnologically inter-
esting aromatic compounds derived thereof. Compound names 
and (heterologous) enzymes are indicated. Genes for the encoding 
enzymes are given in brackets. Precursors, co-substrates, intermedi-
ates, and products (for the sake of consistency, all carboxyl groups are 
depicted in their protonated state): 4HB, 4-hydroxybenzoate; 4HBAL, 
4-hydroxybenzaldehyde; ARB, β-arbutin; CHO, chorismate; DAHP, 
3-deoxy-d-arabinoheptulosonate-7-phosphate; DHQ, 3-dehydroqui-
nate; DHS, 3-dehydroshikimate; E4P, erythrose 4-phosphate; EPSP, 
5-enolpyruvyl-shikimate-3-phosphate; HQ, hydroquinone; PCA, 
protocatechuate; PCAL, protocatechuic aldehyde; PEP, phospho-
enolpyruvate; PYR, pyruvate; S3P, shikimate-3-phosphate; SA, shi-
kimate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; 
UDP, uracil-diphosphate; UDP-glucose, uracil-diphosphate glucose; 
VAN, vanillin; VNA, vanillate. Enzymes (genes): 4HBH (pobA), 
4-hydroxybenzoate-3-hydroxylase; 4HB1H (MNX1), 4-hydroxyben-
zoate-1-hydroxylase (Candida parapsilosis CBS604); CAR, (car) 
carboxylic acid reductase (e.g., Nocardia iowensis); CHPL (ubiC), 
chorismate-pyruvate lyase (E. coli); CS (aroC), chorismate synthase; 
COMT (y200L), catechol-O-methyltransferase (Rattus norvegicus); 
DAHPS (aroG, aroF), 3-deoxy-arabinoheptulosonate-7-phosphate 
synthase; DHQD (aroD), 3-dehydroquinate dehydratase; DHQS 
(aroB), 3-dehydroquinate synthase; DHSD (qsuB), dehydroshikimate 
dehydratase; EPSPS (aroA), 5-enolpyruvyl-shikimate-3-phosphate 
synthase; HQG (as), hydroquinone UDP-dependent glycosyltrans-
ferase (β-arbutin synthase, Rauvolfia serpentin); QSDH (qsuD), qui-
nate/shikimate dehydrogenase; SDH (aroE), shikimate dehydroge-
nase; SK (aroK), shikimate kinase

◂
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isoenzymes (AroF, AroG). The pathway then proceeds 
through a series of six additional enzymatic steps, cul-
minating in the formation of chorismate (CHO), a central 
precursor for the synthesis of the three aromatic amino 
acids l-phenylalanine (PHE), l-tryptophan (TRP), and 
l-tyrosine (TYR) (Fig. 2) as well as folate (vitamin  B9) 
and ubiquinone-10 (coenzyme Q10).

The eponymous and nonaromatic intermediate in the 
pathway is shikimate (SA), which has commercial value. 
SA has attracted significant interest as a pharmaceutical 
building block, most notably as precursor for the industrial 
synthesis of the anti-influenza drug Tamiflu (oseltamivir 
phosphate) (Jackson et al. 2011). In 2015, a C. glutamicum 
variant capable of accumulating up to 11.3 g  L−1 of SA in 
fed-batch cultivations was reported (Zhang et al. 2015). 
To construct this strain, modularized gene libraries encod-
ing the first four enzymes of the shikimate pathway were 
screened to identify the best SA-accumulating variants. 
These enzymes include DAHP synthase (DAHPS, encoded 
by aroG), 3-dehydroquinate synthase (DHQS, encoded by 
aroB), 3-dehydroquinate dehydratase (DHQD, encoded by 
aroD), and SA dehydrogenase (SDH, encoded by aroE) 
(Fig. 1). The best-performing enzyme combination was 
then implemented in a C. glutamicum strain with deletion 
of the aroK-gene. This gene encodes the essential shiki-
mate kinase (SK), which phosphorylates SA to shikimate-
3-phosphate (S3P) (Fig. 1). As a result, the SA-producer 
was auxotrophic for all three aromatic amino acids and 
para-aminobenzoate (PABA) requiring supplementation 
with complex medium components for growth and SA 
production. In another study, a C. glutamicum R variant 
capable of utilizing xylose and arabinose in combination 
with glucose was reengineered to accumulate SA (Kogure 
et al. 2016). This strain was also devoid of any SK activity, 
rendering it auxotrophic for PHE, TRP, TYR, and PABA, 
and also carried a plasmid for the episomal expression 
of aroGBDE. Furthermore, two other genes (qsuB, dehy-
droshikimate dehydratase (DHSD) and qsuD, quinate/SA 
dehydrogenase (QSDH) (Fig. 1) involved in the consump-
tion of SA and its precursor molecules 3-dehydroshiki-
mate (DHS) and 3-dehydroquinate (DHQ) were disrupted. 
Additional modifications of glucose uptake (elimination of 
the phosphotransferase (PTS) system) and its conversion 
via the glycolysis to improve PEP availability allowed for 
the construction of the final variant capable of accumu-
lating up to 141 g  L−1 SA from glucose as sole carbon 
and energy source in high-density resting cell fermenta-
tions. Under similar conditions, 137 g  L−1 SA could be 
obtained when a mixture of glucose, xylose, and arab-
inose was used as substrate. Notably, several shikimate 
pathway intermediates, particularly DHS, accumulated 
at gram-scale levels. More recently, Sato and coworkers 
constructed a genetically similar C. glutamicum variant for 

SA production, maintaining an unmodified phosphotrans-
ferase system while integrating additional chromosomal 
copies of selected genes involved in the shikimate pathway 
(aroGBE) (Sato et al. 2020). In complex medium supple-
mented with the three essential aromatic amino acids and 
PABA, the strain accumulated 13.1 g  L−1 SA from glucose 
under batch conditions. Additionally, the strain was engi-
neered to utilize cellobiose by expressing a β-glucosidase 
gene and secretion of this corresponding enzyme. Under 
the same cultivation conditions, SA accumulation reached 
13.8 g  L−1, with yield comparable to that obtained from 
glucose.

Anthranilate (ANT) is not an intermediate of the shiki-
mate pathway, but is directly synthesized from CHO by ANT 
synthase (ANS), and represents the first intermediate in the 
biosynthetic route to TRP (Fig. 2). ANT can be used for the 
production of polyurethanes and as precursor for various 
food additives and dyes (Wiklund and Bergman 2006). To 
construct a C. glutamicum–based ANT producer, the trpD 
gene, encoding the anthranilate phosphoribosyltransferase 
(APRT), was deleted (Luo et al. 2019). As a result, the modi-
fied variant became TRP-auxotrophic, since APRT catalyzes 
the essential step converting ANT to N-(5'-phosphoribosyl) 
anthranilate (PRA) during TRP biosynthesis. Similar to the 
strategy employed for constructing SA-producing C. glu-
tamicum variants, qsuB and qsuD were deleted to elimi-
nate competing pathways for protocatechuate and quinate 
synthesis, respectively. Additionally, promoter replace-
ment was performed to enhance the expression of aroB and 
aroK. Further optimization included episomal expression 
of a feedback-resistant gene for an AroG variant, along with 
minor modifications in sugar metabolism. These metabolic 
engineering strategies enabled the strain to accumulate 26.4 
g  L−1 ANT during fed-batch cultivation in defined medium 
with TRP supplementation. More recently, a prototrophic 
C. glutamicum variant for ANT production was constructed, 
which eliminated the need for TRP supplementation. This 
strain produced 5.9 g  L−1 ANT in fed-batch bioreactor cul-
tivations, using a glucose-xylose mixture as carbon source 
(Mutz et al. 2024). Similar to the approach by Luo et al., 
this strain carries a plasmid encoding a feedback-resistant 
DAHPS to enhance the flux into the shikimate pathway. 
Additional modifications included modulation of the trans-
lation efficiency of aroK (to increase overall SK activity) and 
trpD (to reduce APRT activity) by start codon replacements, 
thereby minimizing ANT conversion toward TRP biosyn-
thesis. However, the most significant improvement in ANT 
production was achieved by introducing an engineered ANS 
variant that is unresponsive to feedback inhibition by TRP. 
To develop this optimized enzyme, component I of ANS 
(TrpE) was engineered using a biosensor-guided in vivo 
screening strategy to identify suitable variants (Flach-
bart et al. 2021). In a separate study, adaptive laboratory 
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Fig. 2  Schematic overview of metabolic strategies starting from 
chorismate, which are leading to the three aromatic amino acids 
and other compounds of biotechnological interest in C. glutamicum. 
Precursors, co-substrates, intermediates and products (for the sake 
of consistency, all carboxyl groups are depicted in their protonated 
state): 2HB, 2-hydroxybenzoate (salicylate); 2PE, 2-phenyletha-
nol; 3HB, 3-hydroxybenzoate; 4 AHB, 4-amino-3-hydroxybenzoate; 
4 ADC, 4-amino-4-deoxychorismate; AKG, α-ketoglutarate; ANT, 
anthranilate; ARO, arogenate (pretyrosine); CA, para-coumarate 
(4-hydroxycinnamic acid); CDRP, 1-(2-carboxyphenylamino)−1-
deoxy-d-ribulose-5-phosphate; CHO, chorismate; DOPA, 3,4-dihy-
droxyphenyl-l-alanine; G3P, glyceraldehyde-3-phosphate; HPAL, 
hydroxyphenylacetaldehyde; HPPY, hydroxyphenylpyruvate; ICHO, 
isochorismate; IGP, indole-3-glycerol phosphate; IND, indole; 
MANT, methylanthranilate; PABA, para-aminobenzoate; PHE, 
l-phenylalanine; PPA, phenylpyruvate; PRA, N-(5'-phosphoribosyl) 
anthranilate; PPAL, phenylacetaldehyde; PPRP, phosphoribosylpy-
rophosphate; PRP, prephenate; PYR, pyruvate; SAH, S-adenosyl-
l-homocysteine; SAL, salidroside; SAM, S-adenosyl-l-methionine; 
TRP, l-tryptophan; TYO, tyrosol; TYR, l-tyrosine; TYRA, tyramine; 
UDP, uracil-diphosphate; UDP-glucose, uracil-diphosphate glu-
cose. Enzymes (genes): 3HBS (hyg5), chorismatase (3-hydroxy-

benzoate synthase, Streptomyces hygroscopicus); 4HBH (cvphbh), 
4-hydroxybenzoate-3-hydroxylase (e.g., Caulobacter vibrioides); 
ADH (yahK, yqhD), alcohol dehydrogenase (E. coli); ADL (pabC), 
4-amino-4-deoxychorismate lyase (e.g., Xenorhabdus bovienii); ADS 
(pabAB), 4-amino-4-deoxychorismate synthase component I and I 
(e.g., Corynebacterium callunae); ANS (trpEG), anthranilate syn-
thase; ANTM (aamt1), anthranilate methyltransferase (Zea mays); 
APRT (trpD), anthranilate phosphoribosyltransferase; ARDH (tyrA), 
arogenate dehydrogenase; AT (dapC, ilvE, aroT), aminotransferase; 
CM (csm), chorismate mutase; ICS (irp9), isochorismate synthase/
isochorismate pyruvate lyase (salicylate synthase, Yersinia enteroco-
litica); IGPS (trpCF), indole-3-glycerol phosphate synthase; UDPG 
(osugt13), UDP-dependent glycosyltransferase (Oryza sativa); PDH 
(pheA), prephenate dehydratase;  PRAI (trpCF), phosphoribosylan-
thranilate isomerase; KID (aro10), 2-ketoisovalerate decarboxy-
lase (Saccharomyces cerevisiae); TAL (tal), phenylalanine/tyrosine 
ammonia lyase (Flavobacterium johnsoniae); TN (tnaA), tryptopha-
nase (e.g., Providencia rettgeri); TO (tyo) tyramine oxidase (Kocuria 
rhizophila); TS (trpAB), tryptophan synthase; TYD (aadc), tyrosine 
decarboxylase (e.g., Levilactobacillus brevis); TYRO (tyr), tyrosinase 
(Ralstonia solanacearum)
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evolution (ALE) was employed to enhance C. glutamicum’s 
tolerance to ANT. Through sequential batch cultivations in 
shake flasks in the presence of ANT concentrations up to 
25 g  L−1, a variant with improved tolerance was obtained 
(Kuepper et al. 2020). In comparison to the C. glutamicum 
ATCC 13032 wild type, the best-performing evolved vari-
ant exhibited a 2.2-fold increased growth rate and a 1.4-
fold higher final optical density of the culture. However, the 
specific mutations responsible for enhanced ANT tolerance 
remain to be identified.

The microbial production of the three aromatic amino 
acids using C. glutamicum has a long-standing history (Ikeda 
2006). However, over the past decade, only a few studies 
have focused on engineering this bacterium to enhance the 
production. PHE is produced for medical-, pharmaceutical-, 
feed-, and nutritional applications. In particular for the syn-
thesis of aspartame, an artificial, non-saccharide sweetener 
used in foods and beverages PHE is required (Bang et al. 
2021). With the aim of constructing a PHE-overproducing 
strain, Zhang and colleagues overexpressed genes from the 
shikimate pathway and central sugar metabolism in a vari-
ant that already carried endogenous but engineered genes 
encoding a feedback-resistant DAHPS (AroF) and the pre-
phenate dehydratase (PDH, PheA), both key enzymes in 
PHE biosynthesis (Fig. 2) (Zhang et al. 2015). Subsequently, 
the accumulation of PHE and SA was evaluated to identify 
additional targets for metabolic engineering. Combinatorial 
expression of identified key genes revealed that moderate 
expression of genes involved in conversions upstream of SA, 
combined with stronger expression of genes downstream 
of SA, was most effective for maximizing PHE synthesis 
while minimizing SA accumulation. Further modifications 
including improved sugar uptake, reduced PHE (re)uptake 
(by inactivating the gene for the transporter AroP), and 
elimination of acetate and lactate formation, contributed to 
the engineering of the best-performing variant. This strain 
accumulated 15.6 g  L−1 PHE in fed-batch fermentations con-
taining glucose and corn steep liquor. Interestingly, a PHE-
antimetabolite screening using 4-fluorophenylalanine, pub-
lished nine years later, identified mutations in three of the 
previously identified key target genes contributing to PHE 
overproduction: aroG (isoenzyme of aroF), pheA and aroP 
(Tachikawa et al. 2024). A C. glutamicum variant engineered 
for episomal overexpression of the mutated aroG and pheA 
variants and with a chromosomal deletion of aroP allowed 
for the production of up to 6.11 g  L−1 PHE in shake flask 
cultivations.

TRP is a nutritional supplement, has several medical 
applications, and is added to poultry and livestock feed 
to enhance growth rates, reproduction, and overall ani-
mal health (Ikeda 2006). For the production of TRP using 
C. glutamicum, a strain devoid of any chorismate mutase 

(CM) activity was constructed by deleting the essential 
CM-encoding csm gene in a strain background with vari-
ous chromosomal modifications of genes involved in the 
shikimate pathway, leading to PHE- and TYR-auxotrophy 
(Fig. 2) (Mindt et al. 2023). To alleviate attenuation control 
of the endogenous trp operon, which encodes all enzymes 
of the biosynthetic pathway from CHO to TRP, the gene for 
the leader peptide trpL was also deleted. In addition, the 
strain was engineered through chromosomal expression of a 
mutated, endogenous trpE gene encoding a TRP-insensitive 
ANS variant. This was complemented by episomal heterolo-
gous expression of an additional TRP-insensitive trpE copy 
from E. coli, along with the trpD gene for the other ANS 
subunit in the same bacterium. The resulting strain accumu-
lated 2.11 g  L−1 TRP in shake flask cultivations.

Metabolic engineering at the pathway branch points of 
CHO and prephenate (PRP) were also the first step towards 
constructing a C. glutamicum production strain for TYR 
(Fig. 2) (Kurpejović et al. 2023). TYR is utilized in the bio-
synthesis of catecholamine neurotransmitters (e.g., dopa-
mine, norepinephrine, and epinephrine), hormones, and 
melanin, with applications in neuropharmacology, metabolic 
disorder treatments, and dietary supplementation (Lütke-
Eversloh et al. 2007). To achieve TYR production, the start 
codons of the coding sequences of trpE, pheA, and pat 
(also known as aroT, encoding an aminotransferase) were 
altered from the canonical ATG to the less preferred TTG 
in the chromosome, aiming to redirect pathway flux to TYR 
biosynthesis. Evaluation of the resulting variants revealed 
that the start codon modification of pheA had the most pro-
nounced effect on TYR-production. However, this came at 
the cost of PHE bradytrophy, which could be mitigated by 
supplementing 0.5 mM PHE. Unlike some of the aforemen-
tioned studies, neither deletion of qsuABD nor elimination 
of PTS-mediated glucose uptake had a positive effect on 
product formation in this strain background. Nonetheless, 
the functional implementation of the isomerase pathway, 
achieved through the overexpression of genes encoding a 
xylose isomerase and a xylulokinase, enabled the co-utili-
zation of xylose as carbon and energy source. The highest 
TYR concentrations obtained during batch cultivations in 
shake flasks were 3.2 g  L−1 on glucose and 3.6 g  L−1 on a 
1:3 (w/v) glucose-xylose mixture.

Products derived of the shikimate pathway

Protocatechuate (PCA) is a naturally occurring aromatic acid 
with notable properties including antioxidant, antiviral and 
anticancer activity effects against various human cancer cell 
lines (Song et al. 2020). PCA can be synthesized through two 
metabolic routes (1) dehydration of the shikimate pathway 
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intermediate DHS, catalyzed by the DHSD, or (2) hydroxy-
lation of 4-hydroxybenzoate (4HB) by the 4-hydroxyben-
zoate-3-hydroxylase (4HBH) (Fig. 1). The latter precursor, 
4HB, can be directly derived from CHO through the activity 
of a chorismate lyase (CHPL). Okai and colleagues opted for 
the latter metabolic strategy utilizing the CHPL UbiC from 
E. coli (Okai et al. 2016). The gene encoding this enzyme 
was heterologously expressed in an undisclosed PHE-pro-
ducing C. glutamicum F (ATCC 21420) variant, enabling the 
production of 1.14 g  L−1 PCA from glucose during fed-batch 
bioreactor cultivations. Two years later, a C. glutamicum 
strain was engineered to produce PCA via DHSD-mediated 
dehydration of DHS (Kallscheuer and Marienhagen 2018). 
To prevent PCA degradation, the C. glutamicum  DelAro5 
variant lacking the β-ketoadipate pathway, the gentisate 
pathway, and other catabolic routes for aromatics to prevent 
PCA degradation was used. In combination with reduced 
citrate synthase activity for improved precursor availabil-
ity and heterologous expression of a feedback-insensitive 
DAHPS from E. coli, this C. glutamicum strain accumulated 
up to 2.0 g  L−1 PCA from glucose in shake flask cultiva-
tions. In a subsequent study, this strain was equipped with 
a plasmid for the episomal expression of genes encoding 
xylose isomerase and xylulokinase facilitating xylose uti-
lization to enhance E4P availability (Labib et al. 2021). 
Additionally, the endogenous pyk gene encoding pyruvate 
kinase was deleted in this strain to increase the intracellular 
PEP pool, enabling growth-decoupled PCA synthesis when 
xylose was the sole carbon source. Under growth-decoupled 
bioreactor conditions, PCA accumulation reached 9.5 g  L−1, 
when glucose and xylose were used as orthogonal carbon 
substrates for biocatalyst provision and product synthesis, 
respectively. Kogure and coworkers demonstrated that both 
aforementioned routes to PCA can be utilized simultane-
ously to enhance product formation (Kogure et al. 2021). 
With the best strain, concentrations of up to 82.7 g  L−1 PCA 
were achieved with growth-arrested cells cultured at high 
densities.

Notably, PCA also serves as precursor for pseudoaromatic 
dicarboxylic acids, such as 2-pyrone-4,6-dicarboxylic acid 
or 2,4-pyridine dicarboxylic acid. Since these compounds 
are not true aromatics, they are not discussed here. Nonethe-
less, it is worth mentioning that C. glutamicum has recently 
been engineered to produce such compounds at gram scale 
(Cho et al. 2024).

The previously mentioned 4HB is not only a direct 
precursor of PCA; it is also a product of biotechnologi-
cal interest, similar to other monohydroxylated benzoic 
acids such as 2-hydroxybenzoate (2HB) and 3-hydroxy-
benzoate (3HB). While 3HB and 4HB serve as polymer 
building blocks, 2HB—also known as salicylic acid—is 
the precursor of acetylsalicylic acid, better known as the 
painkiller aspirin (del Olmo et al. 2017). In the same study 

investigating the aforementioned PCA production from 
DHS, it could be demonstrated that 2HB, 3HB and 4HB 
can be synthesized from CHO (Fig. 1, Fig. 2) (Kallscheuer 
and Marienhagen 2018). The C. glutamicum  DelAro5-strain 
lacking the catabolic network for aromatics degradation 
was successfully converted into a 2HB producer. Upon 
functional expression of the irp9 gene—encoding a bifunc-
tional isochorismate synthase/isochorismate pyruvate lyase 
(ICS, salicylate synthase) from Yersinia enterocolitica—
this strain synthesized up to 0.01 g  L−1 2HB (Fig. 2). Strep-
tomyces hygroscopicus is known to possess the 3-hydroxy-
benzoate synthase (3HBS, chorismatase) Hyg5, which 
catalyzes hydrolysis and concomitant dehydration of CHO 
leading to 3HB. Up to 0.03 g  L−1 3HB could be synthe-
sized by C. glutamicum  DelAro5 upon functional episomal 
implementation of a codon-optimized hyg5 gene (Fig. 2). 
For 4HB production, CHPL UbiC from E. coli was used, 
allowing for a final product titer of 3.3 g  L−1 4HB (Fig. 1) 
(Kallscheuer and Marienhagen 2018). In the same year, a 
very similar C. glutamicum strain for 4HB was reported 
(Syukur Purwanto et al. 2018). This strain was auxotrophic 
for all three aromatic amino acids due to deletions of trpE 
and csm, essential genes encoding the ANS subunit TrpE 
and CSM. Combined with expression of a gene for a CHPL 
with reduced sensitivity to product inhibition, and exten-
sive modifications of the shikimate pathway the resulting 
variant produced up to 19 g  L−1 4HB in fed-batch fermen-
tations, using complex medium with the essential supple-
mentation of PHE, TRP and TYR. Simultaneously, similar 
efforts by Kitade and colleagues culminated in a highly 
engineered C. glutamicum R variant expressing a highly 
active ubiC gene from Providencia rustigianii. This strain 
accumulated up to 36.6 g  L−1 4HB in jar fermenters using 
aerobic growth–arrested cells (Kitade et al. 2018).

Aldehydes derived from various mono- and dihydroxy-
benzoates serve as flavors, fragrances or as pharmaceuti-
cal precursors with vanillin being a prominent example for 
such compounds (Fig. 1) (Kunjapur and Prather 2015). How-
ever, the production of aromatic aldehydes is challenging 
due to their rapid reduction to the corresponding alcohols. 
To address this challenge, a comprehensive screening of 27 
candidate proteins for aromatic aldehyde reductase activ-
ity was conducted in a C. glutamicum strain engineered for 
the production of 4-hydroxybenzaldehyde (4HBAL) (Kim 
et al. 2022). This screening identified the gene NCgl0324 
to encode an enzyme with the undesired reductase activity. 
Deletion of the corresponding gene led to the accumulation 
of 1.36 g  L−1 4HBAL. Further experiments demonstrated 
that this deletion also enhanced the synthesis of protocat-
echuate aldehyde (PCAL) and vanillin (VAN, 4-hydroxy-
3-methoxybenzaldehyde) in shake flask cultures. Deletion 
of the very same gene also proved crucial for developing a 
process for the biotransformation of vanilliate (VNA) into 
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VAN (Matsuzawa et al. 2024). In this context, a screening 
of 17 carboxylic acid reductase (CAR) candidate proteins 
identified three enzymes capable of reducing of up to 21 g 
 L−1 VNA to VAN in jar fermenters.

CHO not only serves as a precursor for the three aro-
matic amino acids and various mono- and dihydroxylated 
benzoates and their derivatives, but also for PABA men-
tioned before. PABA is an intermediate in endogenous 
folate synthesis and an important building block for com-
mercial drugs and azo dyes (Kluczyk et al. 2012). For 
PABA production in C. glutamicum R, three heterolo-
gous genes encoding 4-amino-4-deoxychorismate syn-
thase components I and II (ADS, encoded by pabAB from 
Corynebacterium callunae) and 4-amino-4-deoxychoris-
mate lyase (ADL, encoded by pabC from Xenorhabdus 
bovienii) were episomally expressed (Fig. 2) (Kubota 
et al. 2016). However, PABA accumulation was accom-
panied by a glycation byproduct, likely formed through 
non-enzymatic reaction of PABA’s primary amino group 
with glucose’s aldehyde group. Acidification effectively 
decomposed this byproduct back into PABA and glucose. 
The best strain yielded up to 43 g  L−1 PAPA in fed-batch 
fermentations. PABA can be further hydroxylated to 
4-amino-3-hydroxybenzoate (4 AHB), a building block 
for polybenzoxazole polymers—high-performance mate-
rials with exceptional mechanical strength and thermal 
stability (Fig. 2) (Hong et al. 2003). Nonaka and col-
leagues built on the strain engineered for PABA produc-
tion and screened six 4-hydroxybenzoate-3-hydroxylases 
(4HBH) for their ability to hydroxylate PABA (Nonaka 
et  al. 2023). CvPHBH from Caulobacter vibrioides 
emerged as the most promising candidate and was further 
adapted for applications in C. glutamicum through protein 
engineering. In fed-batch fermentations using complex 
medium with glucose as carbon and energy source, the 
best variant accumulated up to 13.5 g  L−1 4 AHB.

Methylanthranilate (MANT) is widely used to impart a 
grape scent and flavor in food and cosmetics industries, but 
is currently produced via petroleum-based processes. To 
develop a more sustainable alternative, Luo and colleagues 
modified their previously engineered TRP-auxotrophic C. 
glutamicum strain for ANT production by introducing a gene 
encoding anthranilic acid methyltransferase (ANTM) from 
Zea mays (Fig. 2) (Luo et al. 2019). During O-methylation 
of ANT, this enzyme consumes S-adenosyl-l-methionine 
(SAM) as methyl donor prompting further strain engineering 
to enhance intracellular SAM availability. This was achieved 
by recycling S-adenosyl-l-homocysteine (SAH), the demeth-
ylation product of SAM through episomal overexpression 
of the endogenous gene encoding the SAH hydrolase. In 
biphasic fed-batch cultures using a defined medium contain-
ing glucose and TRP, the best variant enabled the production 
of 5.74 g  L−1 MANT.

Indole (IND), the direct precursor of TRP, is a key sign-
aling molecule in bacteria and plants and is also prized in 
the food and fragrance industries for its jasmine-like aroma 
(Ferrer et al. 2023). Additionally, halogenated and oxygen-
ated IND derivatives can serve as colorants, and hold prom-
ise for therapeutic applications in treating human diseases. 
In nature, IND is synthesized either from indole-3-glycerol 
phosphate (IGP), an intermediate in the TRP biosynthesis 
pathway, or from TRP via bacterial tryptophanases (TNs) 
(Fig. 2). Both metabolic options were implemented in C. 
glutamicum, enabling the microbial production of this aro-
matic heterocycle: In 2022, Ferrer and colleagues leveraged 
the IGP lyase activity of the α-subunit of the endogenous 
bifunctional tryptophan synthase (TS) to produce IND in 
strains supplying IGP (Fig. 2) (Ferrer et al. 2022). In the 
context of this study, plant-derived “stand-alone” enzymes 
possessing only the IGP lyase activity were screened for 
potential application in C. glutamicum. Among six plant-
derived enzymes tested, the IGP lyase from common wheat 
(Triticum aestivum) exhibited a performance comparable to 
that of the endogenous TS α-subunit. Increased IND produc-
tion was achieved by deleting the csm gene, which rendered 
the resulting variant auxotrophic for TYR and PHE, while 
rerouting the metabolic flux in the direction of ANT. How-
ever, other modifications were required to enable higher IND 
titers. These modifications included the deletion of the trpL 
leader peptide gene and the expression of a TRP-insensi-
tive ANS variant-encoding gene from E. coli. Ultimately, 
with application of in situ product recovery (ISPR), using 
tributyrin as a second phase, the best strains produced up 
to 0.67 g  L−1 IND. In the same year, the same group estab-
lished IND production from supplemented TRP in whole-
cell biotransformations using a C. glutamicum strain with 
heterologous expression of the TN gene from the gamma-
proteobacterium Providencia rettgeri (Mindt et al. 2022). 
The highest IND production was achieved with a strain co-
expressing the native aromatic amino acid permease gene 
aroP to enhance TRP uptake. Product toxicity was mitigated 
through ISPR, utilizing dibutyl sebacate as second organic 
phase. The approach enabled complete TRP conversion with 
an IND product titer of 5.7 g  L−1. One year later, the con-
cept of TN-based IND production was expanded to allow 
de novo indole production from glucose, eliminating the 
need for TRP supplementation (Mindt et al. 2023). Initially, 
the csm gene was deleted in an existing SA-accumulating 
C. glutamicum starting strain to increase CHO availability, 
although this rendered the strain auxotrophic for PHE and 
TYR. Upon introduction of plasmids for the heterologous 
expression of the ANS encoding gene from E. coli (Fer-
rer et al. 2022) TRP accumulation was observed. Combined 
with other genetic modifications and ISPR using tributyrin, 
a final IND titer of 1.38 g  L−1 was achieved. Notably, decou-
pling biomass production from IND production by aerobic 
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cultivating growth-arrested cells without PHE- and TYR-
supplementation drastically increased volumetric activity, 
achieving similar IND titers in much shorter timeframes.

C. glutamicum has also been engineered to synthesize 
various TRP-derivatives (e.g., halogenated derivatives) with 
diverse chemical and pharmacological applications. How-
ever, since a comprehensive review on this topic has been 
published recently, these compounds will not be discussed 
further here (Xiao et al. 2023).

Another compound with many applications in the cos-
metic and food industries is 2-phenylethanol (2PE), an aro-
matic alcohol with a rose-like smell, which can be synthe-
sized from the PHE-precursor phenylpyruvate (PPA) (Fig. 2) 
(Zhu et al. 2023). To achieve this, a heterologous Ehrlich 
pathway, facilitating the decarboxylation and reduction of 
PPA, was functionally integrated into an evolved PHE-pro-
ducing C. glutamicum strain. For the Ehrlich pathway two 
genes—aro10, encoding 2-ketoisovalerate decarboxylase 
(KID) from S. cerevisiae, and yahK encoding alcohol dehy-
drogenase (ADH) originating from E. coli—were heterolo-
gously expressed. With additional modifications, the best 
variant produced up to 3.23 g  L−1 2PE from glucose in shake 
flask cultivations. When equipped with the isomerase path-
way for xylose assimilation and a xylose transporter gene 
from E. coli, the C. glutamicum strain produced up to 3.55 
g  L−1 2PE using xylose as sole carbon and energy source. 
The same strain accumulated 3.28 g  L−1 2PE from stalk 
hydrolysate as second-generation feedstock.

The Ehrlich pathway can also be utilized in a C. glutami-
cum variant engineered for TYR-production to synthesize 
tyrosol (TYO) and its glycosylated derivative, salidroside 
(SAL) (Fig. 2). SAL was first identified in raspberry extracts 
during a screening for bioactive compounds with potential 
therapeutic effects against Huntington’s disease (Kalls-
cheuer et al. 2019b). To enable microbial SAL production 
from TYR, the Ehrlich pathway was reconstructed in C. 
glutamicum. Before decarboxylation and reduction to TYO, 
deamination of TYR to hydroxyphenylpyruvate (HPPY) 
was required, a step which was potentially catalyzed by the 
endogenous transaminases (ATs) AroT and/or IlvE (Marien-
hagen et al. 2005). However, even with TYR supplementa-
tion, only 0.15 mg  L−1 SAL could be produced in shake flask 
cultivations. A more successful approach involved the direct 
supplementation of TYO, followed by its glycosylation using 
a UDP-dependent glycosyltransferase (UDPG) from Oryza 
sativa. Under these biotransformative production conditions, 
SAL production reached 9.7 g  L−1. More recently, Junker 
and coworkers also followed the idea to introduce the Ehr-
lich pathway into C. glutamicum to produce TYO from TYR 
(Junker et al. 2025). The best strain variant allowed for a 
product titer of 1.3 g  L−1 TYO, also relying on endogenous 
transaminases to catalyze the conversion of TYR to HPPY 
prior to decarboxylation and reduction to TYO.

β-arbutin (ARB), can also be found in plants such as 
pears, cranberries, and bearberry. ARB is a hydroquinone 
glucoside with antioxidant, anti-inflammatory, antimicro-
bial, and anticancer properties (Saeedi et al. 2021). The 
initial step of ARB synthesis from CHO was established 
in C. glutamicum by introducing the previously mentioned 
CHPL UbiC, which facilitates the conversion of CHO to 
4HB (Fig. 1) (Zhang et al. 2024). Heterologous expres-
sion of a gene encoding 4-hydroxybenzoate-1-hydroxylase 
(4HB1H), identified in Candida parapsilosis CBS604 ena-
bled the reductive decarboxylation of 4HB to hydroquinone 
(HQ). HQ was then glycosylated by an UDP-dependent hyd-
roquinone glycosyltransferase (HQG) derived from Rauvol-
fia serpentin, ultimately yielding ARB. Since these genes 
were introduced into a C. glutamicum variant lacking CM- or 
ANS-activities due to deletions of csm and trpE, a complex 
medium was required to enable the production of 7.94 g  L−1 
ARB in shake flasks.

However, TYR is not only an intermediate of TYO- and 
SAL-biosynthesis, but also a direct precursor of various 
other aromatic compounds of biotechnological interest. 
Tyramine (TYRA), the decarboxylation product of TYR has 
garnered attention as starting material for the production of 
high-performance thermoplastics, pharmaceutically relevant 
compounds and hydrogels (Fig. 2) (Schulz et al. 2019; Chen 
et al. 2023). Heterologous expression of a tyrosine decar-
boxylase (TYD) gene from Levilactobacillus brevis enabled 
the production of up to 1.6 g  L−1 TYRA from glucose in a 
C. glutamicum strain engineered for TYR production during 
shake flask cultivations (Poethe et al. 2024). Under the same 
conditions, introduction of the isomerase pathway into the 
best strain also facilitated TYRA production from xylose 
(1.2 g  L−1). Batch fermentations with glucose or xylose in 
bioreactors allowed for faster growth and product forma-
tion but resulted in lower final TYRA titers (1 g  L−1 TYRA 
for both carbon sources). The decarboxylation of TYR to 
TYRA also offers the possibility to produce TYO from 
TYRA via oxidative deamination in a single step (Junker 
et al. 2025) (Fig. 2). To achieve this, a gene for a tyramine 
oxidase (TO) from Kocuria rhizophila was introduced into a 
strain expressing a gene encoding a TYD. This strain accu-
mulated up to 1.87 g  L−1 TYRA. In co-cultivations of two 
C. glutamicum variants either expressing a gene for a TO 
or a TYD, the TYO titer was increased to 1.95 g  L−1 TYO.

The hydroxylation of the aromatic ring of TYR by 
tyrosinase (TYRO) in the presence of oxygen yields 
3,4-dihydroxyphenyl-l-alanine (DOPA), the most com-
monly used treatment of Parkinson’s disease (Fig.  2) 
(Chávez-Béjar et al. 2012). Heterologous expression of 
a TYRO-encoding gene from Ralstonia solanacearum in 
wild-type C. glutamicum cells enabled the production of 
0.26 g  L−1 DOPA from 1 g  L−1 TYR when using glucose 
and xylose as carbon sources (Kurpejović et al. 2021). 
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In these experiments, optimal concentrations of 0.4 mM 
copper sulfate—essential for TYRO activity as a copper-
containing enzyme—and 0.2 mM thymol to prevent unde-
sired DOPA oxidation were determined for cultivations. 
Additionally, whole-cells pre-grown on glucose and pro-
ducing TYRO were used for biotransformations of TYR 
to DOPA in distilled water without any buffering agent. 
Under these conditions, up to 0.4 g  L−1 DOPA was pro-
duced in the presence of 0.4 mM ascorbic acid to prevent 
any undesired DOPA oxidation.

The non-oxidative deamination of TYR by tyrosine 
ammonia-lyases (TALs) yields para-coumarate (CA, or 
4-hydroxycinnamate), a phenylpropanoid believed to pos-
sess several bioactive properties, including antioxidant, anti-
microbial, or anti-inflammatory effects (Fig. 2) (Zhu et al. 
2024). Heterologous expression of a TAL-encoding gene 
from Flavobacterium johnsoniae enabled the conversion of 
endogenously provided TYR to CA in the previously dis-
cussed C. glutamicum  DelAro5 variant unable to catabolize 
aromatics (Mutz et al. 2023). The accumulation of ANT as 
a major byproduct was eliminated by reducing ANS activity 
through targeted mutagenesis, thereby circumventing TRP 
auxotrophy. Subsequently, PHE biosynthesis was reduced by 
replacing the ATG start codon of pheA, the PDH-encoding 
gene by the less preferred GTG, and PEP availability was 
improved to further increase CA accumulation (Fig. 2). As 
a result, a maximum titer of 0.7 g  L−1 CA was achieved in 
defined medium.

(Poly)phenols and aromatic polyketides

In plants, CA and other phenylpropanoids such as cinnamate, 
caffeate, or ferulate serve as precursors for more complex 
(poly)phenols such as flavonoids and stilbenoids (Fig. 3) 
(Marienhagen and Bott 2013). These compounds can also 
be classified as polyketides since their synthesis involves 
polyketide synthases (PKSs). Several thousand different 
(poly)phenols have been identified and can be categorized 
into chemically distinct groups, including stilbenoids, flavo-
noids, and phenylbutanoids—many of which have potential 
applications in preventing or treating cancer, cardiovascu-
lar diseases, and neurodegenerative disorders (Milke et al. 
2018). However, plants usually contain complex mixtures 
of chemically similar polyphenolic compounds, making it 
challenging to isolate individual compounds in large quanti-
ties. In contrast, integrating biosynthetic pathways for plant 
polyphenols into microorganisms enables the production of 
individual polyphenols as chemically distinct compounds. 
This approach allows for large-scale synthesis and easier iso-
lation. In recent years, C. glutamicum has been engineered 
to produce various biotechnologically and pharmaceutically 
relevant plant (poly)phenols.

The first significant step in engineering C. glutamicum for 
polyphenol production was achieved in 2016 with the con-
struction of a platform strain featuring the deletion of four gene 
clusters comprising 21 genes involved in the catabolism of 
aromatic compounds (Kallscheuer et al. 2016b). Among these 
were four genes of the phd gene cluster discovered shortly 
before, which plays a crucial role in the degradation of phe-
nylpropanoids via a CoA-dependent β-oxidative deacetylation 
pathway (Kallscheuer et al. 2016a). To facilitate polyphenol 
biosynthesis, codon-optimized, plant-derived genes were het-
erologously expressed in this C. glutamicum variant. These 
included a 4-coumarate:CoA ligase (4CL) from parsley (Pet-
roselinum crispum), responsible for the CoA activation of sup-
plemented phenylpropanoids, and a stilbene synthase (STS) 
from peanut (Arachis hypogaea), a type III PKS. STSs catalyze 
the sequential condensation of three malonyl-CoA units with 
the CoA-activated phenylpropanoid, followed by cyclization 
(van Summeren-Wesenhagen and Marienhagen 2013). This 
engineered pathway enabled the production of pinosylvin, 
resveratrol (RES), and piceatannol from supplemented cin-
namate, CA, and caffeate, respectively (Fig. 3) (Kallscheuer 
et al. 2016b). Unlike most other bacteria, C. glutamicum pos-
sesses a type I fatty acid synthase, which is a eukarotic-type 
multienzyme, into which all activities required for fatty acid 
elongation are integrated (Schweizer and Hofmann 2004). The 
addition of 25 µM cerulenin, a fatty acid synthase inhibitor that 
selectively binds to the β-keto-acyl-ACP synthase subunit, thus 
blocking the interaction with malonyl-CoA, increases intra-
cellular malonyl-CoA availability by shutting down de novo 
fatty acid biosynthesis. This enhanced stilbenoid production, 
yielding up to 0.16 g  L−1 RES. Functional implementation of 
genes encoding chalcone synthase (CHS, Petunia × hybrida) 
and chalcone isomerase (CHI, Petunia × hybrida) in the same 
strain background enabled the biosynthesis of up to 0.04 g 
 L−1 of the (2S)-flavanones naringenin (NAR) and eriodic-
tyol (ERI) from supplemented CA and caffeate, respectively. 
Other attempts to produce ERI from TYR in C. glutamicum 
involved the supplementation of malonate as source for mal-
onyl-CoA (Wu et al. 2022). To facilitate this, matC and matB 
from Rhizobium trifolii, encoding a malonate transporter and 
a malonyl-CoA synthetase, respectively, were introduced into 
C. glutamicum. The resulting strain, also expressing genes 
for a 4CL from P. crispum, a CHS from Petunia × hybrida 
and a CHI from Medicago sativa accumulated 0.02 g  L−1 
NAR in complex medium containing 20 g  L−1 glucose, 2 g 
 L−1 malonate, and 0.5 g  L−1 TYR. Subsequently, the hpaBC 
genes from E. coli encoding 4-hydroxyphenylacetate-3-hy-
droxylase were expressed in C. glutamicum to convert NAR 
to ERI. Under the same cultivation conditions, up to 0.01 g 
 L−1 ERI was produced. Kallscheuer and colleagues made also 
initial steps towards polyphenol production from glucose by 
integrating DAHPS from E. coli to enhance carbon flux into 
the shikimate pathway (Kallscheuer et al. 2016b). Along with 
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the already mentioned TAL from F. johnsoniae to facilitate 
the conversion of endogenous TYR to CA up to 0.06 g  L−1 
RES could be obtained with the resulting strain in shake flask 
cultivations and in the presence of 25 µM cerulenin. Subse-
quently, the polyphenol portfolio accessible via C. glutami-
cum was expanded by decorating stilbenoid and flavonoid 
core structures by O-methylation or hydroxylation providing 
access to more stable compounds of higher commercial inter-
est (Kallscheuer et al. 2017b). Heterologous expression of a 

gene for an O-methyltransferase (ROMT) from Vitis vinifera 
in a RES-producing C. glutamicum strain allowed for the syn-
thesis of trace amounts of mono-O-methylated pinostilbene 
and 0.04 g  L−1 di-O-methylated pterostilbene from supple-
mented CA (Fig. 3). Furthermore, the expression of heterolo-
gous genes encoding 2-oxoglutarate-dependent dioxygenases 
in (2S)-flavanone-producing C. glutamicum strains enabled 
the production of flavanonols and flavonols starting from the 
phenylpropanoids CA and caffeate (Fig. 3) (Kallscheuer et al. 
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2017b). The targeted flavonols kaempferol and quercetin were 
produced with maximum titers of 0.02 g  L−1 and 0.01 g  L−1, 
respectively. Notably, efforts were made to produce polyphe-
nols independently from the shikimate pathway (Kallscheuer 
et al. 2017c). To achieve this, a synthetic pathway utilizing 
inexpensive supplemented benzoic acids, such as 4HB, was 
introduced into C. glutamicum. This metabolic strategy mimics 
a reversed β-oxidative phenylpropanoid degradation pathway, 
eliminating the need for ammonia lyase activity (Kallscheuer 
et al. 2017a). Using this approach, RES titers of 0.005 g  L−1 
RES were achieved from 5 mM 4HB.

Hitherto, most of these experiments were conducted with the 
costly supplementation of cerulenin to increase the malonyl-
CoA pool, as availability of this two-carbon donor molecule 
represents the key bottleneck in microbial polyphenol synthe-
sis (Milke and Marienhagen 2020). Consequently, subsequent 
metabolic engineering efforts focused on enhancing malonyl-
CoA availability independent of exogenous fatty acid inhibitors. 
Initial experiments demonstrated that the sole overexpression of 
endogenous accBCD1 genes encoding the native acetyl‐CoA 
carboxylase was insufficient to enhance polyphenol produc-
tion in C. glutamicum (Milke et al. 2019a). As an alternative, 
intracellular acetyl‐CoA availability was increased by reducing 
the flux into the TCA cycle through reduction of citrate syn-
thase activity by promoter replacement of gltA coding for this 
enzyme. In defined medium, these strains accumulated 0.02 
g  L−1 NAR or 0.11 g  L−1 RES from glucose without supple-
mentation of phenylpropanoid precursors or cerulenin. In this 
study, the fasR gene was deleted. FasR encodes a transcrip-
tional repressor, which negatively regulates the expression of 
accBCD1 and of the genes for two fatty acid synthases (fasIA 
and fasIB). However, the inactivation of fasR led to a severe 
growth defect, likely due to deregulated fatty acid synthesis 
consuming cellular resources (Milke et al. 2019a). To address 
this issue, only the FasR-binding operator sequences upstream 
of the accBCD1 open reading frames were mutated, while 
maintaining the natural FasR-mediated regulation of fasIA and 
fasIB (Milke et al. 2019b). In combination with other modifi-
cations, the resulting strain exhibited a significantly increased 
intracellular malonyl-CoA pool, as confirmed by intracellular 
LC–MS/MS measurements and enhanced product formation. 
Notably, the resulting C. glutamicum variant named M-CoA, 
equipped with a plasmid enabling RES production from sup-
plemented CA, could be successfully applied in co-cultivation 
with the aforementioned CA-producing C. glutamicum variant, 
yielding 0.03 g  L−1 RES from glucose (Mutz et al. 2024).

Subsequently, C. glutamicum M-CoA was success-
fully employed for the microbial production of flavoring 
phenylbutanoids (Milke et al. 2020). One such compound, 
4-(4-hydroxyphenyl)butan-2-one—commonly known as rasp-
berry ketone—is responsible for the typical scent and flavor 

of raspberries (Guo et al. 2021). The chemical synthesis of 
nature-identical raspberry ketone is well established, as this 
compound is widely used in the flavoring of food, beverages, 
and perfumes. However, the combination of high demand 
for natural raspberry ketone and its low natural abundance in 
raspberries makes it expensive natural flavoring components. 
C. glutamicum was engineered for raspberry ketone synthesis 
from supplemented CA by combining the already mentioned 
4CL from P. crispum with the benzalacetone synthase (BAS) 
from Chinese rhubarb (Rheum palmatum) yielding p-hydroxy-
benzalacetone (Fig. 3) (Milke et al. 2020). For its subsequent 
reduction to raspberry ketone, the NADPH-dependent cur-
cumin/dihydrocurcumin reductase CurA from E. coli was 
employed as it provides a hitherto unknown benzalacetone 
reductase (BAR) activity. The engineered strain accumulated 
up to 0.1 g  L−1 raspberry ketone. Additionally, supplementing 
ferulate or cinnamate instead of CA enabled the biosynthesis 
of two other naturally occurring flavor compounds, zingerone 
(0.07 g  L−1) and benzylacetone (0.01 g  L−1), via the same 
pathway (Fig. 3).

In 2018, Zha et al. demonstrated that C. glutamicum can 
convert the supplemented flavonoid catechin to the antho-
cyanin cyanidin 3-O-glucoside (Zha et al. 2018). To achieve 
this, genes encoding anthocyanidin synthase (ANS) from 
Petunia × hybrida and flavonoid 3-O-glucosyltransferase 
(3GT) from Arabidopsis thaliana were co-expressed in C. 
glutamicum. ANS, a 2-oxoglutarate- and iron-dependent 
oxygenase, catalyzes catechin oxidation to cyanidin, while 
the 3GT facilitates cyanidin glycosylation, yielding the more 
stable cyanidin 3-O-glucoside (Fig. 4A). Further process 
optimization and enhanced UDP-glucose availability ena-
bled the production of 0.04 g  L−1 cyanidin 3-O-glucoside 
from 0.5 g  L−1 catechin in complex medium.

During several fed-batch fermentations in bioreactors for 
plant polyphenol production, it became evident that main-
taining product stability at elevated oxygen concentrations 
poses a significant challenge (Braga et al. 2018). In this 
context, ISPR, particularly through a biphasic extractive 
strategy, offers a promising approach to protect polyphenol 
products from oxidative degradation (Tharmasothirajan et al. 
2021). Additionally, ISPR serves as an effective method to 
mitigate cytotoxic effects associated with high product con-
centrations while enhancing overall process performance. A 
solvent screening identified tributyrin as the most biocom-
patible solvent for C. glutamicum, making it the preferred 
choice for biphasic extraction due to its favorable partition-
ing and solubility properties for RES (Tharmasothirajan 
et al. 2021). In bioreactor studies, biphasic cultivation with 
tributyrin enabled a RES titer of 1.71 g  L−1, with approxi-
mately 64% of the stilbenoid successfully recovered from 
the tributyrin phase at an elevated pH of 12.
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Other aromatic compounds 
of biotechnological interest

All aromatic products described thus far are derived from 
intermediates or CHO as end product of the shikimate 
pathway, or the biosynthetic routes leading to the three aro-
matic amino acids. However, PKSs are not only relevant for 
polyphenol synthesis from phenylpropanoids as previously 
discussed, but can also be employed to directly synthesize 
aromatic compounds from acetyl-CoA, malonyl-CoA and 
other activated aliphatic precursors.

The first example is the chromone noreugenin, a phar-
macologically relevant plant pentaketide synthesized from 

malonyl-CoA by medicinal plant plants such as Aloe arbore-
scens (Abe et al. 2005). To establish noreugenin biosynthesis 
in C. glutamicum, the above-mentioned malonyl-CoA pro-
viding variant C. glutamicum M-CoA was used as a chassis 
(Milke et al. 2019b). For product synthesis, only a single 
gene from A. aborescens, encoding pentaketide chromone 
synthase (PCS), needed to be heterologously expressed. 
This type III PKS catalyzes the iterative decarboxylation 
and condensation of five malonyl-CoA molecules yielding 
noreugenin (Fig. 4B). Initially, only the accumulation of the 
C1/C6 cyclized intermediate 1-(2,4,6-trihydroxyphenyl)-
butane-1,3-dione was detected. However, acidification of 
the culture broth post-cultivation enabled full cyclization, 
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resulting in the accumulation of 0.05 g  L−1 of the bicyclic 
end product, noreugenin.

C. glutamicum M-CoA was also the strain of choice 
for establishing 6-methylsalicylic acid (6MSA) synthesis 
(Kallscheuer et al. 2019a). This chemically simple aromatic 
compound is a building block in the biosynthesis of sev-
eral antibiotics, including pactamycin and polyketomycin 
(Daum et al. 2009; Ito et al. 2009). Establishing microbial 
6MSA synthesis in C. glutamicum marked the first instance 
of introducing a large multi-domain type I PKS in this 
host. Specifically, the 6MSA synthase (6MSS) ChlB1 from 
Streptomyces antibioticus—a 5.3 kbp-gene encoding a 186 
kDa protein—catalyzes the conversion of acetyl-CoA and 
three molecules of malonyl-CoA into 6MSA in consecutive 
steps (Fig. 4C). Initial challenges related to protein fold-
ing were overcome by translation fusion of ChlB1 to the 
C-terminus of the maltose-binding protein MalE from E. 
coli, which supported proper expression. Interestingly, the 
6MSS exhibited activity even in the absence of a heterolo-
gous dedicated 4′-phosphopantetheinyl transferase (PPTase), 
typically required for post-translational activation of type 
I PKSs. This unexpected finding led to the discovery that 
the endogenous PPTase PptA of C. glutamicum can also 
activate ChlB1Sa. The best-performing strain accumulated 
up to 0.04 g  L−1 6MSA within 48 h of cultivation. Further 
experiments revealed that PptA can also activate non-ribo-
somal peptide synthetases, positioning C. glutamicum as a 
promising microbial platform for the production of other fine 
chemicals and medicinal drugs (Kallscheuer et al. 2019a).

Germicidins, a class of 2-pyrones from the sponge-asso-
ciated Streptomyces sp., exhibit both, aromatic and aliphatic 
characteristics, and possess significant, specific inhibitory 
activity against human hexokinase, an abundant enzyme in 
cancer cells (Bai et al. 2021). Zhan and colleagues estab-
lished germicidin C-synthesis in C. glutamicum by intro-
ducing germicidin synthase (GCS), a type III PKS from 
Streptomyces coelicolor (Zhan et al. 2023). GCS catalyzes 
the condensation of 3-oxo-4(S)-methyl-hexanoyl-ACP and 
methylmalonyl-CoA to produce germicidin (Fig. 4D). How-
ever, the accumulation of propionyl-CoA and methylmal-
onyl-CoA leads to growth inhibition, but introduction of 
GCS as methylmalonyl-CoA-dependent PKS can relieve 
this inhibitory effect. To further enhance germicidin pro-
duction, ALE was employed, leveraging the fitness advan-
tage conferred by polyketide biosynthesis in the presence 
of propionate. This approach led to an improved germicidin 
titer of 0.01 g  L−1.

In addition to PKSs, other enzymes also enable access 
to aromatic compounds independently of the shikimate 
pathway. The only example in C. glutamicum thus far is 
the production of the bioplastic precursor 3-amino-4-hy-
droxybenzoate (3,4-AHBA). This compound, an interme-
diate of grixazone biosynthesis in Streptomyces griseus, 

is synthesized directly from l-aspartate-4-semialdehyde 
and dihydroxyacetone phosphate via the activities of two 
enzymes: GriI and GriH (Fig. 4E) (Suzuki et al. 2006). 
GriI catalyzes an aldol condensation between l-aspartate-
4-semialdehyde and dihydroxyacetone phosphate, and 
GriH converts the resulting C7 metabolite into 3,4-AHBA. 
A C. glutamicum l-lysine producing strain, heterologously 
expressing S. griseus griI and griH successfully produced 
1 g  L−1 3,4-AHBA from sweet sorghum juice (Kawaguchi 
et al. 2015). Interestingly, production titers from sweet sor-
ghum juice rich in amino acids were fivefold higher than 
from pure sucrose. Supplementation experiments suggested 
that l-leucine specifically enhanced 3,4-AHBA production, 
likely by increasing pyruvate availability for l-aspartate-
4-semialdehyde biosynthesis. A subsequent study showed 
that 3,4-AHBA production improved under low dissolved 
oxygen conditions (Kawaguchi et al. 2021). Comparative 
metabolic profiling at different oxygen levels revealed accu-
mulation of different organic acids including TCA-cycle 
intermediates and lactate. An engineered strain lacking lac-
tate dehydrogenase activity accumulated up to 5.6 g  L−1 3,4-
AHBA in glucose fed-batch cultures, likely due to enhanced 
pyruvate availability.

Conclusions and challenges

The portfolio of aromatic chemicals, which can be produced 
from renewable resources through microbial fermentation 
has significantly expanded in recent years, and C. glutami-
cum, already well known in the industry as an amino acid 
producer, has been developed to a versatile platform organ-
ism for the production of these valuable compounds.

In particular, the presented C. glutamicum chassis strains 
providing aromatic precursor molecules derived from the 
shikimate pathway or CoA-activated thioesters such as 
malonyl-CoA represent excellent hosts for the functional 
implementation of biosynthetic gene clusters from various 
different sources. Very recently, C. glutamicum M-CoA, 
mentioned several times in this review, was used to express 
genes encoding six selected type III PKSs of unknown 
function from different planctomycetes to screen for novel 
activities (Milke et al. 2024). In these experiments, several 
enzymes involved in the synthesis of long-chain alkylresor-
cinols—compounds with potential functions as antibiotics 
or electron carriers—were identified.

Further improvements of C. glutamicum–based cell factories 
for aromatics are necessary to enhance the cost-competitiveness 
of biotechnologically produced aromatic chemicals compared 
to conventional petroleum-derived compounds. A key focus 
should be on suitable metabolic engineering strategies. Many 
examples presented in this review rely heavily on the geneti-
cally induced auxotrophies for one or more aromatic amino 
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Table 1  Overview of aromatic compounds accessible with Corynebacterium glutamicum 

Aromatic compound Cultivation mediuma Type of cultivation Titer [g  L−1] Cultiva-
tion time 
[h]

Reference

Shikimate pathway intermediates and aromatic amino acids
Shikimate Complex medium; suc, 38 Batch, shake flask 7.4 96 Zhang et al. 2015
Shikimate Complex medium; suc Fed-batch, bioreactor 11.3 70 Zhang et al. 2015
Shikimate Defined medium; glu Fed-batch, bioreactor, 

growth-arrested cells
141 48 Kogure et al. 2016

Shikimate Defined medium; glu, xyl, 
ara

Fed-batch, bioreactor, 
growth-arrested cells

137 48 Kogure et al. 2016

Shikimate Complex medium; Glu, 
50; l-phe, 0.1; l-trp; 0.1; 
l-tyr 0.1

Batch, unspecified vessel 13.1 72 Sato et al. 2020

Shikimate Complex medium; cel, 50; 
l-phe, 0.1; l-trp; 0.1; 
l-tyr 0.1

Batch, unspecified vessel 13.8 72 Sato et al. 2020

Anthranilate Defined CGXII-medium; 
glu; l-trp supplementa-
tion

Fed-batch, bioreactor 26.4 84 Luo et al. 2019

Anthranilate Defined CGXII-medium; 
glu; xyl

Fed-batch, bioreactor 5.9 192 Mutz et al. 2024

l-Phenylalanine Complex medium; glu Fed-batch, bioreactor 15.8 80 Zhang et al. 2015
l-Phenylalanine Complex medium; glu, 80 Batch, shake flask 6.11 72 Tachikawa et al. 2024
l-Tryptophan Defined CGXII medium; 

glu, 40; l-phe, 0.25; l-tyr, 
0.25

Batch, shake flask 2.14 48 Mindt et al. 2023

l-Tyrosine Defined CGXII medium; 
glu, 40; l-tyr, 0.5 mM

Batch, shake flask 3.2 48 Kurpejović et al. 2023

l-Tyrosine Defined CGXII medium; 
glu, 10; xyl, 30; l-tyr, 
0.5 mM

Batch, shake flask 3.6 48 Kurpejović et al. 2023

Shikimate pathway-derived compounds
Protocatechuate Complex medium; glu Fed-batch, bioreactor 1.14 120 Okai et al. 2016
Protocatechuate Defined CGXII medium; 

glu, 40
Batch, shake flask 2 72 Kallscheuer and Marienha-

gen 2018
Protocatechuate Defined BT medium, glu Fed-batch, bioreactor, 

growth-arrested cells
82.7 32 Kogure et al. 2021

Protocatechuate Defined CGXII medium, 
xyl, 40

Batch, shake flask 9.6 100 Labib et al. 2021

Protocatechuate Defined CGXII medium, 
glu

Fed-batch, bioreactor 16.5 130 Labib et al. 2021

2-hydroxybenzoate (sali-
cylic acid)

Defined CGXII medium; 
glu, 40

Batch, shake flask 0.01 72 Kallscheuer and Marienha-
gen 2018

3-hydroxybenzoate Defined CGXII medium; 
glu, 40

Batch, shake flask 0.3 72 Kallscheuer and Marienha-
gen 2018

4-hydroxybenzoate Defined CGXII medium; 
glu, 40

Batch, shake flask 3.3 72 Kallscheuer and Marienha-
gen 2018

4-hydroxybenzoate Complex medium; glu; 
l-phe, 0.9; l-trp, 0.7; 
l-tyr, 0.8

Fed-batch, bioreactor 19 65 Purwanto et al., 2018

4-hydroxybenzoate Defined medium; glu Fed-batch, bioreactor, 
growth-arrested cells

36,6 24 Kitade et al. 2018

4-hydroxybenzaldehyde Complex medium; glu, 80 Batch, shake flask 1.36 48 Kim et al. 2022
Protocatechuate aldehyde Complex medium; glu, 80 Batch, shake flask 1.18 48 Kim et al. 2022
Vanillin Complex medium; glu, 80; 

l-met, 0.5
Batch, shake flask 0.31 48 Kim et al. 2022
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Table 1  (continued)

Aromatic compound Cultivation mediuma Type of cultivation Titer [g  L−1] Cultiva-
tion time 
[h]

Reference

Vanillin Complex medium; glu, 
85.7; vanillic acid, 42.9

Biotransformation of vanil-
lic acid, jar reactor

21 45 Matsuzawa et al. 2024

4-aminobenzoate Complex medium; glu Fed-batch, bioreactor 43.1 48 Kubota et al. 2016
4-amino-3-hydroxyben-

zoate
Complex medium; glu Fed-batch, bioreactor 13.5 72 Nonaka et al. 2023

Methylanthranilate Defined CGXII-medium; 
glu; l-trp supplementa-
tion

Fed-batch, bioreactor 5.74 84 Luo et al. 2019

Indole Defined CGXII medium; 
glu, 40; l-phe, 0.25; l-
trp, 0.25;

Batch, shake flask 0.67 48 Ferrer et al. 2022

l-tyr, 0.25; in situ product removal with tributyrin, 20% 
(vol/vol)

Indole Defined CGXII medium; 
glu, 10; l-trp, 10

Biotransformation of l-trp, 
bioreactor

5.7 24 Mindt et al. 2022

In situ product removal 
with dibutyl sebacate, 
20% (vol/vol)

Indole Defined CGXII medium; 
glu, 40; l-phe, 0.25; l-tyr, 
0.25;

Batch, shake flask 1.38 70 Mindt et al. 2023

In situ product removal 
with tributyrin, 20% (vol/
vol)

2-phenylethanol Complex medium; glu, 60 Batch, shake flask 3.23 50 Zhu et al. 2023
2-phenylethanol Complex medium; xyl, 60 Batch, shake flask 3.55 60 Zhu et al. 2023
2-phenylethanol Complex medium; corn 

stalk hydrolysate (glu, 41; 
xyl, 19)

Batch, shake flask 3.28 48 Zhu et al. 2023

Tyrosol Defined medium; glu; l-
phe, 0.5 mM

Batch, shake flask 1.3 160 Junker et al. 2025

Tyrosol Defined medium; glu; l-
phe, 0.5 mM

Batch, shake flask 1.87 160 Junker et al. 2025

Tyrosol Defined medium; glu; l-
phe, 0.5 mM

Batch, shake flask 1.95 160 Junker et al. 2025

Salidroside Defined CGXII medium; 
l-tyr, 20 mM

Batch, shake flask 0.15 72 Kallscheuer et al. 2019b

Salidroside Defined CGXII medium; 
tyrosol, 40 mM

Biotransformation of tyro-
sol, shake flask

9.7 100 Kallscheuer et al. 2019b

β-arbutin Complex medium, glu 80, 
insufficient information 
on media supplements

Batch, shake flask 7.94 72 Zhang et al. 2024

Tyramine Defined CGXII medium; 
glu, 40; l-phe, 0.5 mM

Batch, shake flask 1.6 72 Poethe et al. 2024

Tyramine Defined CGXII medium; 
xyl, 40; l-phe, 0.5 mM

Batch, shake flask 1.2 72 Poethe et al. 2024

Tyramine Defined CGXII medium; 
glu, 40; l-phe, 1 mM; 
l-trp, 1 mM

Batch, bioreactor 1 36 Poethe et al. 2024

Tyramine Defined CGXII medium; 
xyl, 40; l-phe, 1 mM; 
l-trp, 1 mM

Batch, bioreactor 1 72 Poethe et al. 2024

3,4-dihydroxyphenyl-l-ala-
nine (l-DOPA)

Defined CGXII medium; 
glu, 10; xyl, 3; l-tyr, 1

Batch, shake flask 0.36 72 Kurpejović et al. 2021
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Table 1  (continued)

Aromatic compound Cultivation mediuma Type of cultivation Titer [g  L−1] Cultiva-
tion time 
[h]

Reference

3,4-dihydroxyphenyl-l-ala-
nine (l-DOPA)

Water; l-tyr, 1 Biotransformation, 15-ml 
test tubes

0.4 48 Kurpejović et al. 2021

p-coumarate Defined CGXII medium; 
glu, 40

Batch, shake flask 0.66 72 Mutz et al. 2024

Aromatic polyketides
Resveratrol Defined CGXII medium; 

glu, 40; p-ca, 5 mM; cer, 
0.025 mM

Biotransformation of 
p-coumarate, shake flask

0.16 72 Kallscheuer et al. 2016b

Resveratrol Defined CGXII medium; 
glu, 40; cer, 0.025 mM

Batch, shake flask 0.06 72 Kallscheuer et al. 2016b

Resveratrol Defined CGXII medium; 
glu, 40

Batch, shake flask 0.11 72 Milke et al. 2019a

Resveratrol Defined CGXII medium; 
glu; p-ca, 5 mM

Fed-batch, bioreactor 1.71 72 Tharmasothirajan et al. 2021

In situ product removal 
with tributyrin, 10% (vol/
vol)

Resveratrol Defined CGXII medium; 
glu; 40; co-cultivation of

Batch, shake flask 0.03 72 Mutz et al. 2024

p-ca and resveratrol prod. 
C. glutamicum variants

Pinostilbene Defined CGXII medium; 
glu, 40; p-ca, 5 mM; cer, 
0.025 mM

Biotransformation of 
p-coumarate, shake flask

0.01 144 Kallscheuer et al. 2017b

Pterostilbene Defined CGXII medium; 
glu, 40; p-ca, 5 mM; cer, 
0.025 mM

Biotransformation of 
p-coumarate, shake flask

0.04 144 Kallscheuer et al. 2017b

Pinosylvin Defined CGXII medium; 
glu, 40; cinnamate, 
5 mM; cer, 0.025 mM

Biotransformation of cin-
namate, shake flask

0.12 72 Kallscheuer et al. 2016b

Piceatannol Defined CGXII medium; 
glu, 40; caffeate, 5 mM; 
cer, 0.025 mM

Biotransformation of 
caffeate, shake flask

0.06 72 Kallscheuer et al. 2016b

Naringenin Defined CGXII medium; 
glu, 40; p-ca, 5 mM; cer, 
0.025 mM

Biotransformation of 
p-coumarate, shake flask

0.04 72 Kallscheuer et al. 2016b

Naringenin Defined CGXII medium; 
glu, 40

Batch, shake flask 0.02 72 Milke et al. 2019a

Naringenin Complex medium; glu, 20; 
l-tyr, 0.5; malonate, 2

Batch, shake flask 0.01 72 Wu et al. 2022

Dihydrokaempferol Defined CGXII medium; 
glu, 40; p-ca, 5 mM; cer, 
0.025 mM

Biotransformation of 
p-coumarate, shake flask

0.02 144 Kallscheuer et al. 2017b

Kaempferol Defined CGXII medium; 
glu, 40; p-ca, 5 mM; cer, 
0.025 mM

Biotransformation of 
p-coumarate, shake flask

0.02 144 Kallscheuer et al. 2017b

Eriodictyol Defined CGXII medium; 
glu, 40; caffeate, 5 mM;

Biotransformation of 
caffeate, shake flask

0.04 72 Kallscheuer et al. 2016b

Eriodictyol Complex medium; glu, 20; 
l-tyr, 0.5; malonate, 2

Batch, shake flask 0.01 72 Wu et al. 2022

Dihydroquerecetin Defined CGXII medium; 
glu, 40; caffeate, 5 mM; 
cer, 0.025 mM

Biotransformation of 
p-coumarate, shake flask

0.01 144 Kallscheuer et al. 2017b
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acids, to reroute the carbon flux and maximize product titers 
(Table 1). However, depending on the targeted product, such 
strain designs would be economically unfeasible for large-scale 
industrial bioprocesses, as they would require costly supple-
mentation of essential compounds. Similarly, the choice of the 
cultivation medium plays a crucial role—it should be as simple 
as possible and should fit to subsequent downstream process-
ing strategies. The use of complex medium components such 
as peptone, tryptone or yeast extract, which were included in 
some studies reviewed here, is unlikely to be viable in scaled-
up bioprocesses (Table 1). Notably, avoiding auxotrophies and 
utilizing defined media without complex additives would also 
improve the comparability (and likely also the reproducibility) 
of scientific studies on the production of small aromatic com-
pounds with C. glutamicum.

However, the development of suitable production strains 
for aromatic compounds requires accelerated strain con-
struction and the characterization of numerous variants. To 
achieve this, biofoundries—advanced facilities that integrate 
automation, molecular biology, and computational tools—
are essential for streamlining these processes. In such a 
setting, high-throughput technologies for tasks ranging 

from cell factory construction to cultivation and analytics, 
combined with machine learning to optimize the design-
build-test-learn cycle, would unlock the full potential of C. 
glutamicum. Initial steps in this direction have already been 
taken (Kang et al. 2022; Rosch et al. 2024).

Last but not least, unconventional solutions are needed to 
address challenges such as substrate uptake, product export, or 
product toxicity. For instance, at higher product concentrations, 
most aromatic compounds are cytotoxic, negatively affecting 
cell integrity and transport processes, even in the case of such 
a robust host as C. glutamicum. Recently, a screening of free 
fatty acid supplements identified palmitelaidic acid and lin-
oleic acid as cost-effective and suitable additives to mitigate 
cytotoxic effects of stilbenoid- and flavonoid production in C. 
glutamicum (Tharmasothirajan et al. 2023). These free fatty 
acids are not metabolized, but remain in the cell envelope, 
counteracting membrane damage by aromatic product accu-
mulation. This strategy ultimately enabled up to a threefold 
increase in polyphenol titers in bioreactor cultivations. Given 
its cost-effectiveness, this approach could be a promising option 
for large-scale production of other membrane-active aromatic 
compounds of industrial value using C. glutamicum.

Table 1  (continued)

Aromatic compound Cultivation mediuma Type of cultivation Titer [g  L−1] Cultiva-
tion time 
[h]

Reference

Quercetin Defined CGXII medium; 
glu, 40; caffeate, 5 mM; 
cer, 0.025 mM

Biotransformation of 
p-coumarate, shake flask

0.01 144 Kallscheuer et al. 2017b

Raspberry ketone Defined CGXII medium; 
glu, 40; p-ca, 5 mM

Biotransformation of 
p-coumarate, shake flask

0.1 72 Milke et al. 2020

Zingerone Defined CGXII medium; 
glu, 40; ferulate, 5 mM

Biotransformation of feru-
late, shake flask

0.07 72 Milke et al. 2020

Benzylacetone Defined CGXII medium; 
glu, 40; cinnamate, 5 mM

Biotransformation of 
caffeate, shake flask

0.01 72 Milke et al. 2020

Cyanidin 3-O-glucoside Complex medium; glu, 20; 
catechine 0.5

Biotransformation of cat-
echin, shake flask

0.04 48 Zha et al. 2018

Other non-shikimate pathway-derived aromatic compounds or polyketides
Noreugenin Complex medium; glu, 40 Batch, shake flask 0.05 72 Milke et al. 2019b
6-methylsalicylic acid Defined CGXII medium; 

glu, 40
Batch, shake flask 0.04 48 Kallscheuer et al. 2019a

Germicidin C Defined CGXII medium, 
propionate

Incomplete information 0.01 80 Zhan et al. 2023

3-amino-4-hydroxyben-
zoate

Complex medium; sweet 
sorghum juice (suc, 40; 
glu, fru)

Batch, shake flask 1 72 Kawaguchi et al. 2015

3-amino-4-hydroxyben-
zoate

Defined CGXII medium; 
glu

Fed-batch, bioreactor 5.6 122 Kawaguchi et al. 2021

a A medium is considered to be “complex” when complex medium components such as yeast extract, peptone, or tryptone are added, or fed-
batch cultivations only the carbon and energy source is indicated, not the amount of substrate added. All concentrations are given in g  L−1 if not 
stated otherwise. Carbon sources used for C. glutamicum cultivations: ara, arabinose; cel, cellubiose; fru, fructose; glu, glucose; rib, ribose; suc, 
sucrose; xyl, xylose; p-ca, p-coumarate; cer, cerulenin
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